A Research on Interior Location of Improved Monte Carlo Algorithm Based on RSSI

نویسندگان

  • LiWen Liang
  • Zhi Tan
چکیده

For the problem that the traditional static positioning algorithms can not locate the mobile network node accurately, and the traditional Monte Carlo localization algorithm features low positioning accuracy and poor positioning accuracy due to the low sampling efficiency of the nodes, an improved Monte Carlo (Higher Monte Carlo, HMCL) localization algorithm is thereby proposed. The RSSI distance measured model is used to optimize the sampling weight and the position of the node is predicted by the least squares fitting nodes. At the same time, the cross algorithm is introduced to improve the particle activity; finally, the sampling area is optimized and the sampling interval is determined. It is found that the modified Monte Carlo algorithm can greatly reduce the number of sampling times and the positioning error of the nodes; at meanwhile, the positioning error is stable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The m...

متن کامل

Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location– allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. ...

متن کامل

Presenting a New Algorithm for Determining Optimal Replaceable Capacity of Conventional Power Plants by Renewable Power Plants Based on Monte Carlo Method

Given the substitution process of generators using renewable energy sources instead of conventional generators in modern power systems, this paper proposes a Monte Carlo based method to determine an optimal level of this change. At first, LOLE index of the system was calculated without wind power to obtain the reference index. Then, the wind turbine units are replaced with the conventional gene...

متن کامل

Indoor location tracking using RSSI readings from a single Wi-Fi access point

This paper describes research towards a system for locating wireless nodes in a home environment requiring merely a single access point. The only sensor reading used for the location estimation is the received signal strength indication (RSSI) as given by an RF interface, e.g., Wi-Fi. Wireless signal strength maps for the positioning filter are obtained by a two-step parametric and measurement ...

متن کامل

Monte Carlo Simulation to Solve the Linear Volterra Integral Equations of The Second Kind

This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017